
April 2000 The Delphi Magazine 61

Dragging
And Dropping
Part 1: VCL
by Brian Long

The Delphi VCL has supported
drag and drop operations ever

since version 1, way back in 1995. It
was enhanced just a little in the
first 32-bit version (Delphi 2 in
1996) but, apart from that, the
basic mechanisms have remained
much the same.

Whilst using drag and drop in a
Delphi application is made very
easy by the VCL support, little
seems to have been written on the
subject, which makes doing more
interesting variations on the stan-
dard theme more complicated.

This article is the first in a series
of three that will be looking at the
subject of drag and drop in Delphi
applications. This one will look at
the basic VCL support for dragging
and dropping within a Delphi
application.

Next month’s instalment looks at
how custom drag objects can be
used to enhance the appearance of
drag operations, and how they can
simplify complex drag operations.

The final part of this mini-series
will look at the more involved sub-
ject of dragging and dropping
between applications (requiring us
to do COM things and make use of
many esoteric constants and
record structures).

Here Thar Be Drag (ons)
The VCL has in-built facilities for
supporting dragging and dropping
within a given application. A drag
and drop operation relies upon the
user clicking the left (or sometimes
the right) mouse button down on
some control, then moving their
mouse (whilst keeping the button
held down) over to another con-
trol, and finally releasing the
mouse button.

The control that initially gets
clicked on is called the source of

the drag, or drag source, and the
one under the mouse when the
button is released is called the
target, the drag target or drop target.
As far as the user is concerned,
they are under the impression that
they are physically dragging the
source control (or information
shown on it) onto the target con-
trol. In truth of course, the user is
just moving the mouse with a
button held down, however the ter-
minology used (and maybe the
cursor image displayed) upholds
the user’s view.

It is down to the application to
interpret this particular mouse
operation and do something sensi-
ble with it. This includes changing
the mouse cursor to suggest a drag
operation is occurring, as well as
indicating whether the control
under the mouse is happy to
accept the dragged source control
or not. Of course it also involves
doing something when the user
ends a drag operation by dropping
the dragged control on another
control.

Fortunately the VCL makes short
shrift of these requirements. The
tricky stuff is dealt with by the
code in the Controls unit sending
internal component messages
around under appropriate circum-
stances (the cm_Dragmessage, with
various parameters). As far as the
Delphi programmer is concerned,
there are three simple steps to get
drag and drop working.

Firstly, you must enable drag-
ging from the source control. Then,
when someone starts dragging
from the source, a drag operation
will be started. The VCL will set the
mouse cursor appropriately as you
move your mouse around the
screen. By default, it will be a ‘No
Entry’ type cursor. You can see

this cursor by setting a control’s
Cursor property to crNoDrop, which
looks like .

The next step is to make the
potential target controls indicate
that they are happy to accept the
source being dropped. At runtime,
this is indicated by the cursor
changing to a normal drag cursor
(the TCursor type value of crDrag
by default, which looks like).
This default cursor is obtained
from the dragged control’s
DragCursor property.

The final step is to implement
what happens if the user drops the
source control onto the target
control. By default, nothing hap-
pens except the drag operation is
terminated.

Let’s go through these steps one
at a time, looking at what
possibilities the VCL offers.

What A Drag!
Normally, when you click and drag
on an arbitrary control on a form,
nothing particularly special
happens. Specifically, no drag
operation starts off (no cursor
changes, no ability to drop, etc).

You can cause a drag operation
to start in one of two ways: auto-
matically or manually. To start
drag operations automatically, set
the source control’s DragMode
property to dmAutomatic (it
defaults to dmManual). This prop-
erty is defined in TControl, so all
visual controls will have it, be they
Delphi versions of real Windows
controls or not. The effect of set-
ting DragMode to dmAutomatic is that
clicking the left mouse button
down on a control will automati-
cally start a drag operation with-
out any extra code.

Without using this DragMode set-
ting, you can start a drag operation
manually with a call to the con-
trol’s BeginDrag method. BeginDrag
has one mandatory parameter,
which is a Boolean that dictates
whether the drag operation begins
immediately. One reason for call-
ing BeginDrag is that you might
want to only allow drag operations
under some special circum-
stances. Take an edit or memo con-
trol for example. These already
use mouse dragging operations to

62 The Delphi Magazine Issue 56

highlight text. If you want to permit
text selection as well as allow drag-
ging from the edit/memo, you
could restrict drag operations to
only start when the Control key is
held down, for example. Listing 1
shows how an edit control’s
OnMouseDown event handler could
achieve this.

Alternatively, you may want to
start a drag operation with the
right mouse button, rather than
the left (Windows dragging sup-
ports the right mouse button, but
normal VCL dragging is only
invoked by the left mouse button).
Listing 2 shows how an event
handler might do this.

A value of True passed to Begin-
Drag immediately starts a drag
operation. On the other hand, a
value of Falsewill only start the full
drag operation when the mouse
moves a certain number of pixels
from where it was clicked. The
point of this is for normal clicks to
be permitted (where the mouse
doesn’t move, thereby not causing
the drag to start), whilst still allow-
ing dragging operations (which
only kick in when the mouse moves
a certain number of pixels).

For example, a listbox control
could use the code shown in List-
ing 3 as an OnMouseDown event han-
dler. This would allow you to left
click on items in the list as usual,
without starting drag operations,
and would also allow you to start a
drag operation by left clicking on
an item (not on a blank area) and
dragging the mouse.

When False is passed to
BeginDrag, the user must move the

mouse 5 pixels to start a drag. In
Delphi 1, 2 and 3 this is a fixed
value, but Delphi 4 (and later)
allows you to specify alternative
pixel distances. You can change
the default non-immediate mouse
drag distance threshold by assign-
ing a new value to Mouse.Drag-
Threshold (Mouse is a global object
instance, created in the Controls
unit). Alternatively, you can pass
an optional second parameter to
BeginDrag. This parameter defaults
to -1, meaning that Mouse.Drag-
Threshold will be used.

A value of dmAutomatic assigned
to the DragModeproperty of a Delphi
1 to Delphi 3 control causes the
control to call BeginDrag(True)
when the left mouse button is
clicked on it (that is, an immediate
drag operation starts). Delphi 4
and later changes this. The control
now calls the protected polymor-
phic BeginAutoDrag method
(declared as dynamic), which
calls:

BeginDrag(Mouse.DragImmediate,
Mouse.DragThreshold).

You can change the values of
Mouse.DragImmediate and Mouse.
DragThreshold to affect global drag
operations (despite the online
help currently suggesting these
properties are read-only). Custom
components can also override the
BeginAutoDrag method to change
what happens if the user drags
them when DragMode is set to
dmAutomatic. In fact TCustomForm
overrides it and does nothing in
the re-implementation, to ensure
that the user cannot drag a form if
its DragMode property is set to
dmAutomatic.

Will You Accept This Object?
After allowing some drag opera-
tions to start, using one of the two
ways described above, we now
need to get some other target con-
trol (or controls) to indicate that
they will accept something
dragged from the source. This is
done by writing an OnDragOver
event handler for the target con-
trol(s) (an empty one is shown in
Listing 4).

The event handler has a number
of parameters that give
information on the drag operation.

The most important parameter
is Accept, which is a var parameter.
You set this to False if you do not
accept a drag from the suggested
source. It defaults to True, which
means that by default, an
OnDragOver event handler will
accept any source. However, if you
do not make an OnDragOver event

procedure TForm1.Edit1MouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
//Check this is an edit and Ctrl is pressed
if (Sender is TCustomEdit) and (ssCtrl in Shift) then
TCustomEdit(Sender).BeginDrag(True)

end;

➤ Listing 1: Allowing dragging from an edit control, without affecting
text selection.

procedure TForm1.Edit1MouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
if Button = mbRight then
(Sender as TControl).BeginDrag(False)

end;

➤ Listing 2: Starting a drag operation with the right mouse button.

procedure TForm1.ListBox1MouseDown(Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
//Check this is a listbox left mouse button event
if (Sender is TCustomListBox) and (Button = mbLeft) then
with TCustomListBox(Sender) do
//Verify mouse is over a listbox item
if ItemAtPos(Point(X, Y), True) <> -1 then
//Start a non-immediate drag operation
BeginDrag(False)

end;

procedure TForm1.ImageDragOver(Sender, Source: TObject;
X, Y: Integer; State: TDragState; var Accept: Boolean);

begin
end;

➤ Listing 3: Manually starting a listbox drag operation.

➤ Listing 4: An OnDragOver event handler.

April 2000 The Delphi Magazine 63

handler, the control will not accept
any drag operations.

You can see a simple OnDragOver
event handler in Listing 5. This is
an OnDragOver event handler for a
memo component, that will accept
something dragged only from an
edit control.

The effect of the Accept parame-
ter being set to True is that the
usual No Entry drag cursor will
change to the dragged control’s
DragCursor property when the
mouse is over a target control that
accepts it. The user will be allowed
to drop the dragged control on the
target, although at this point
nothing will happen when they do
so.

Sender represents the control
whose event is firing, and this is
happening because the control
indicated by the Source parameter
is currently over it at the position
indicated by the X and Y
parameters, relative to Sender.

The State parameter tells how
the mouse is moving relative to the
control under the mouse. As a
dragging operation proceeds,
when the mouse enters a control,
its OnDragOver event is triggered
with State set to dsDragEnter. It is
also repeatedly triggered as the
mouse moves over the control
(State is dsDragMove) and poten-
tially triggered one last time when
the mouse moves out of a control,
or the drag operation is terminated
whilst the mouse is over the
control (State is dsDragLeave).

You can use the State parameter
to start certain operations, allo-
cate various resources or what-
ever, as the user starts dragging
across a given control. You can
then stop the operation, or free the
resources when the user drags the
mouse out of the control, or the
drag operation is terminated
whilst over that control.

Listing 6 shows a simple (if
entirely academic) application of
this. Assuming the target compo-
nent (a memo) is happy to accept
the source (an edit), information
about the drag operation is dis-
played in a label whilst the mouse
is moved over the target. At any
point when the drag operation is
not active, or when the target con-
trol is not the memo, the label is
invisible.

OnDragOver is called, if present,
from the DragOver dynamic pro-
tected method. Custom compo-
nent classes can override this
method to provide additional func-
tionality when a drag operation
moves over them, if necessary.

Dropping Off...
When the user eventually performs
the ‘drop’ part of the drag and drop
operation, by releasing the mouse
over a target control that claims to
accept it, the target control’s
OnDragDrop event handler is
invoked. Listing 7 shows an empty
OnDragDrop event handler.

The parameters are a subset of
the OnDragOver event handler’s
parameters. The user dragged the
Source control and dropped it

on Sender. X and Y are the co-
ordinates relative to the control
that was dropped on (Sender).

The code in an OnDragDrop event
handler can do whatever is neces-
sary to implement the drop. If the
control in question can accept
drops from multiple sources,
acting differently for each one,
then some more checking of the
Sourceparameter will be required.

The OnDragDrop event handler is
called from the public DragDrop
dynamic method. Component
classes can potentially perform
custom drop functionality in an
overridden version of this method.
Being public, you could also get
the same behaviour as a drag and
drop operation by directly calling
a target control’s DragDropmethod,
passing the source object and X
and Y co-ordinates. For example,
this statement gets the same end
result as the user initiating a drag
operation from an edit control and
dropping it on a memo:

Memo1.DragDrop(Edit1, 0, 0);

Testing The Theory
Having got through the three basic
steps for drag and drop, let’s
build a simple application that
employs drag ‘n’ drop. It will be
built first of all with no drag and
drop support, and then we will
retro-fit drag and drop support
into the application.

The application will allow the
user to navigate around their
drives, using some of the older
navigation components that were

procedure TForm1.Memo1DragOver(Sender, Source: TObject;
X, Y: Integer; State: TDragState; var Accept: Boolean);

begin
if Source is TEdit then
Accept := True

else
Accept := False

//The above can be written more succinctly as:
// Accept := Source is TEdit

end;

➤ Listing 5: A simple OnDragOver event handler.

procedure TForm1.ImageDragDrop(Sender, Source: TObject; X, Y: Integer);
begin
end;

➤ Listing 7: An OnDragDrop event handler.

➤ Listing 6: An OnDragOver event handler that uses the State
parameter.

procedure TForm1.Memo1DragOver(Sender, Source: TObject; X, Y: Integer;
State: TDragState; var Accept: Boolean);

begin
Accept := Source is TEdit;
if Accept then
case State of
dsDragEnter : Label1.Show;
dsDragMove : Label1.Caption := Format('Dragging %s to %s at (%d,%d)',
[(Source as TControl).Name, (Sender as TControl).Name, X, Y]);

dsDragLeave: Label1.Hide
end;

end;

64 The Delphi Magazine Issue 56

on the System page of the Delphi 1
Component Palette but are on the
Win 3.1 page of all later versions.
The user can employ these compo-
nents to locate bitmap files on their
machine. When one or more
bitmap files are shown in the file
listbox, double clicking one of
them will load it into an image com-
ponent, also on the form. The
image component is surrounded
by a bevel component, to make the
image’s location more obvious.

Add the following key compo-
nents to the form of a new
application, changing their names
to what is enclosed in brackets: a
TLabel (DirLabel), a TImage (Image),
a TEdit (FileEdit), a TFileListBox
(FileList), a TDirectoryListBox
(DirList), a TDriveComboBox (Drive-
Combo), and a TFilterComboBox
(FilterCombo). Apart from position-
ing and sizing the components, the
important properties should be set
as shown in Listing 8.

Now make an OnDblClick event
handler for the file listbox as per
the code in Listing 9, which loads
the selected bitmap file into the
image control (assuming it is in a
supported format).

This gives us an application that
has no support for drag and drop,
but which does allow bitmap files
to be loaded into an image compo-
nent. So now we can add the impor-
tant drag and drop support with
the three previously outlined
steps.

The first step is to enable the
drag from the source (the file
listbox). This can be done simply
by setting the DragMode property to
dmAutomatic, which means any left
click anywhere on the listbox will
start a drag operation. Alterna-
tively, you can make an
OnMouseDown event handler with
code like that shown in Listing 3.
Since a TFileListBox is indirectly
inherited from TCustomListBox, the
same code will work fine.

The second step is to tell the
image component to accept any-
thing dragged from the file listbox.
This involves making an OnDragOver
event handler for the image com-
ponent with the following logical
assignment within it:

Accept := Source = FileList

Finally, when the user drops on the
image component we need to load
the file as selected in the file listbox
into the image. This requires an
OnDragDrop event handler for the
image component. The statement
in the file listbox’s OnDblClick
event handler (Listing 9) could be
duplicated in the new event
handler, but code duplication is
usually a bad thing, and is to be
avoided. Besides, in a real
application, the code that would
need duplicating might be
considerably larger.

Instead, we will invoke the file
listbox’s OnDblClick event handler
from within the image’s OnDragDrop
event handler. You can do this
directly, as in:

FileListDblClick(FileList);

or, in 32-bit Delphi, you can do it
indirectly, by referring to the event
property of the component in
question, as shown in Listing 10. In
both cases, I am ensuring that the
file listbox is passed as the Sender
parameter to the event handler,
just in case the event handler
makes use of that parameter. In an
event handler, Sender should
always refer to the object whose
event is being handled. Delphi 1
does not support the syntax used
to verify that an event property
has an event handler associated
with it.

The application is now com-
plete, and you can find a copy on
this month’s disk as VCLDrop.Dpr.
Run it in any version of Delphi, and
you should find that you can drag a
bitmap file from the file listbox
onto the image component, which
will then load the bitmap and dis-
play it. You can see a file being
dragged onto the image
component in Figure 1.

Customising Drag Operations
The VCL has a number of routines
up its metaphorical sleeve that can
be used to analyse and customise
drag and drop operations.

As has been mentioned, when a
dragged control is over a target
control that will accept it, the

➤ Listing 8: Property values for the first drag and drop application.

object Image: TImage
Stretch = True

end
object FileEdit: TEdit
Text = '*.bmp'

end
object FileList: TFileListBox
FileEdit = FileEdit

end
object DirList: TDirectoryListBox
DirLabel = DirLabel
FileList = FileList

end
object DriveCombo: TDriveComboBox
DirList = DirList

end
object FilterCombo: TFilterComboBox
FileList = FileList
Filter =
'Bitmap files (*.bmp)|*.bmp|All files (*.*)|*.*'

end

procedure TForm1.FileListDblClick(Sender: TObject);
begin
Image.Picture.LoadFromFile(FileList.FileName)

end;

➤ Listing 9: Loading a file into an image component.

procedure TForm1.ImageDragDrop(Sender, Source: TObject; X, Y: Integer);
begin
{ If FileList has an OnDblClick event handler... }
if Assigned(FileList.OnDblClick) then
{ ... invoke it }
FileList.OnDblClick(FileList)

end;

➤ Listing 10: Invoking the file listbox's OnDblClick event handler.

66 The Delphi Magazine Issue 56

mouse cursor is set to the dragged
control’s DragCursorproperty. This
property defaults to crDrag, but
you can change it to other values to
modify the drag cursor appear-
ance. You can either choose one of
the pre-defined system cursors, or
use a custom mouse cursor. The
Cursor.Dpr project uses a custom
drag cursor, as shown in Figure 2.

To load a custom mouse cursor,
make a Windows resource file con-
taining the cursor (using Resource
Workshop, or the Image Editor that
comes with Delphi, or some other
tool if you prefer). A sample cursor
resource file is on this month’s disk
(PacCur16.Res for Delphi 1 and
PacCur32.Res for all 32-bit ver-
sions) containing a cursor named
PacMan. The code in the program
required to load this custom
cursor into a control’s DragCursor
property is shown in Listing 11.

All controls have a public
Dragging method. This parameter-
less function returns True if the
control is being dragged (which
means that a drag operation was
initiated through that control, and
has not yet terminated). This
allows any piece of code (not just
the code in OnDragOver and OnDrag-
Drop event handlers) to check
whether a certain control is cur-
rently in the process of being
dragged.

To complement the BeginDrag
method, controls also have an
EndDrag method that allows you to
programmatically terminate a drag
operation. EndDrag takes a Boolean
parameter called Drop. If Drop is
True and the mouse is over a con-
trol that will accept the drag, then

the control being
dragged is
dropped. Under all
other circum-
stances, the drag
operation is cancelled.

More generically, the Controls
unit (in Delphi 2 and later) imple-
ments a CancelDrag procedure
which cancels the current drag
operation, if there is one, without
dropping the dragged object.

A drag operation can therefore
be terminated in a number of ways.
The user can positively terminate a
drag by dropping the control on a
target that accepts it. They can
also cancel the drag by dropping
the control on something that does
not accept it, or by pressing the
Escape key. The programmer can
terminate the drag positively or
negatively using the dragged con-
trol’s EndDrag method, or cancel it
with CancelDrag.

If a custom component needs to
do anything particularly special
when a drag operation is cancelled,
it can override the protected
dynamic method DragCanceled. By
default, this does nothing. How-
ever, the TCustomListBox class
overrides it to fix certain mouse
usability issues that arise when a
drag operation is cancelled.

The Controls unit offers another
global routine called FindDrag-
Target. This takes a TPoint record
that describes a screen location
and is designed to return the con-
trol that occupies that position.
Whilst its name suggests it will
return a target control that is ripe
for accepting things, it does no
such checking. It will return the
control at the specified screen
position, and that control may or
may not have suitable OnDragOver
and OnDragDrop event handlers.
The only extra checking performed
by this routine is dictated by the
additional Boolean parameter
(AllowDisabled) that controls
whether disabled controls will be
considered for returning. If no

control can be found at the
specified position, FindDragTarget
returns nil.

Whilst the OnDragOver event han-
dler’s State parameter can enable
you to start operations when the
user drags one control into
another one, and then stop those
operations when the control is
dragged back out, there are two
events that allow you to do more
widespread operations.

A control’s OnStartDrag event
handler (see Listing 12) will be trig-
gered as soon as a drag operation
on it starts, either through a call to
its BeginDrag method, or by being
clicked on when DragMode is set to
dmAutomatic. We will look more
closely at what we can do with this
event, which was introduced in
Delphi 2, in next month’s
instalment.

A corresponding OnEndDrag
event handler is called when the
drag operation stops (also shown
in Listing 12). This can either be
because the control was dropped,

➤ Figure 1:
An application
that supports
drag and drop.

➤ Figure 2: Dragging from an
edit to a memo with a custom
drag cursor.

const
crPacMan = 1; { Use values > 0 }

...
{$ifdef Windows}
{$R PacCur16.Res}

{$else}
{$R PacCur32.Res}

{$endif}
procedure TForm1.FormCreate(
Sender: TObject);

begin
Screen.Cursors[crPacMan] :=
LoadCursor(
HInstance, 'PacMan');

Edit1.DragCursor := crPacMan
end;

➤ Listing 11: Loading a custom
drag cursor from a Windows
resource file.

April 2000 The Delphi Magazine 67

or because the operation was ter-
minated in some way. This event
(which has been around since
Delphi 1) takes four parameters.
The ever-present Senderparameter
is the control that is no longer
being dragged. Target represents
the control that Sender was
dropped on, but which can be nil
in the case of a terminated drag
operation. The X and Y co-
ordinates, relative to Target, are
also passed as parameters, though
if Target is nil these parameters
will both be 0.

The OnEndDrag event is triggered
after execution of the DragCanceled
method. If the drag is terminated
successfully with a drop, the
source’s OnEndDrag event occurs
after the target’s OnDragDropevent.

OnStartDrag and OnEndDrag are
called from the protected dynamic
methods DoStartDrag and DoEnd-
Drag respectively, which again can
be overridden by new component
classes to perform additional tasks
specific to the component being
written.

Summary
This article has endeavoured to
describe the rich VCL support for
easy drag and drop in your applica-
tions. Whilst it is very flexible and
customisable, all you need to start
with is three simple steps to add

procedure TForm1.Label1StartDrag(Sender: TObject; var DragObject: TDragObject);
begin
end;
procedure TForm1.Label1EndDrag(Sender, Target: TObject; X, Y: Integer);
begin
end;

➤ Listing 12: OnStartDrag and
OnEndDrag event handlers.

drag and drop support into your
application.

Next month we will look at how
custom drag objects can be used
to both enhance the appearance of
the mouse cursor when a control is
being dragged, and also how they
can simplify the coding of more
complex drag operations.

Brian Long is a UK-based free-
lance consultant and trainer. He
spends most of his time running
Delphi and C++Builder training
courses for his clients, and
doing problem-solving work for
them. You can reach him at
brian@blong.com

Copyright ©2000 Brian Long.
All rights reserved.

	Here Thar Be Drag (ons)
	What A Drag!
	Will You Accept This Object?
	Dropping Off...
	Testing The Theory
	Customising Drag Operations
	Summary

